
NASA-CR-19_331

..........................- - On-Line Upgrade of
_: _ _ Program Modules Using AdaPT

Raymond S. Waldrop
Richard A. Volz

Gary W. Smith
Texas A&M University

'_ Stephen J, Goldsack
p_

A. A. Holzbach-Valero
_ "_m _ o_ imperial College, London, England

m_ _0
"P U o0
O_ t- _-:

.... 2 _ 0

- June 17, 1993

_O

=_ _ Cooperative Agreement NCC 9-16
Research Activity No. SE.35

'=" LU ,-4 Ul

NASA Johnson Space Center
Engineering Directorate

Right Data Systems Division

-- Research Institute for Computing and Information Systems

' University of Houston-C/ear Lake

__ __ ,,,, ,,,.:.!!iiL!!.........................

TECHNICAL REPORT

M

The RICIS Concept_

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS) in 1986 to encourage the NASA
Johnson Space Center (JSC) and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated
program ofresearch in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-
bflltles. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to Jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission is being
implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.
RICIS also collaborates with industry in a companion program. Thls program

is focused on serving the research and advanced development needs of
industry.

Moreover_ uIiCL established relationships w'lth other universities and re-

search organizations, having common research interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help

oversee RICIS research and education programs, while other research
organizations are involved via the "gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and informa-

tion sciences. RICIS, worklngJoinfly with its sponsors, advises on research
needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/JSC and industry.

J

i

_J

]
..d

.J

On-Line Upgrade of
Program Modules Using AdaPT

w

w

i

m

w

=

w

W

Er

Ill

m

Im

mm

m

m_m

J

Ul

m

rll

E

l

It

IF

m

m

i!

m

B

i
g

m

w

w

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing

and Information Systems by Raymond S. Waldrop, Richard A. Volz and Gary W.

Smith of Texas A&M University and A. A. Holzbacher-Valero and Stephen J.

Goldsack of Imperial College, London, England. Dr. E.T. Dickerson served as

RICIS research coordinator.

Funding was provided by the Engineering Directorate, NASA/JSC through

Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA research coordinator for this activity

was Terry D. Humphrey of the Systems Software Section, Flight Data Systems

Division, Engineering Directorate, NASAIJSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

E --

=

w

m

W

w

w

L--

w

n

mr

ql

i
me

-=-

i

M

mg

i

Z
U

I

i

Hi
i

i

I
RD

r

m

E
w

m
m
w

m

w

v

w

On-Line Upgrade of Program Modules Using AdaPT

Task "1"7Report

NASA Subcontract #074
Cooperative Agreement NCC-9-16

Research Activity # SE.35

Period of Performance: May 1, 1990 - March 31, 1993

Submitted to
RICIS

Submitted by
Ray Waldrop, Texas A&M University
Richard Volz, Texas A&M University

Gary W. Smith, Texas A&M University
A. A. Holzbacher-Valero, Imperial College, London, England

S. J. Goldsack, Imperia/College, London, England

w

m_

E
m

ID

m

J

m

W

m
I
I

g

m
m_
!

ql

m
II
I
I

!
,I

m

TP

i

II

DII

II

.m
m

R
m

|

w

m

m

m

m
M

m

W

m

w

w

m

w

On-Line Upgrade of Program Modules Using AdaPT

Raymond S. Waldrop, Richard A. Volz,

Gary W. Smith

Texas A&M University

A.A. Holzbacher-Valero and S. J. Goldsack,

Imperial College, London

June 17,1993

g

U

Oil

qg

IBb

=

B

I

t
|

J
i
U

w

r-

Contents

1 Introduction 1

2 Overview of AdaPT 1

w

3 AdaPT and the Replacement Process 4

3.1 AdaPT's Support For Program Configuration 5

3.2 Operation of the Allocator 5

3.3 Deallocation of Partition Storage 6

4 The Replacement Process 6

4.1 Characterization of the Replacement Process 6

4.2 Taxonomy of the Replacement Process 8

Partition Replacement 10

5.1 Description 10

5.2 Replaceable Server Partitions 11

5.3 Replaceable Client Partitions 20

6 Node Replacement 23

7 Conclusions and Future Work 26

W

gm_

m

i

w

m

gm

I

a

J

m

i

m

m

mm

W

m

i

m

m

1 INTRODUCTION 1

1 Introduction

=

= ,

One purpose of our research is the investigation of the effectiveness and expressiveness of

AdaPT[l], a set of language extensions to Ada 83, for distributed systems. As a part of

that effort, we are now investigating the subject of replacing, e.g. upgrading, software modules

while the software system remains in operation. The AdaPT language extensions provide a

good basis for this investigation for several reasons:

• they include the concept of specific, self-contained program modules which can be manip-

ulated,

• support for program configuration is included in the language, and

• although the discussion will be in terms of the AdaPT language, the AdaPT to Ada 83

conversion methodology being developed as another part of this project will provide a

basis for the application of our findings to Ada 83 and Ada 9X systems.

The purpose of this investigation is to explore the basic mechanisms of the replacement pro-

cess. With this purpose in mind, we will avoid including issues whose presence would obscure

these basic mechanisms by introducing additional, unrelated concerns. Thus, while replace-

ment in the presence of real-time deadlines, heterogeneous systems, and unreliable networks is

certainly a topic of interest, we will first gain an understanding of the basic processes in the
absence of such concerns. The extension of the replacement process to more complex situations

can be made later.

A previous report[3] established an overview of the module replacement problem, a tax-

onomy of the various aspects of the replacement process, and a solution to one case in the

replacement taxonomy. This report provides solutions to additional cases in the replacement

process taxonomy: replacement of partitions with state and replacement of nodes. The solutions

presented here establish the basic principles for module replacement. Extension of these solu-

tions to other more complicated cases in the replacement taxonomy is direct, though requiring

substantial work beyond the available funding.

2 Overview of AdaPT

AdaPT has been described in detail in[1]. This section will provide a brief introduction to the

major features of AdaPT. New features introduced in AdaPT are the partition, the node,

and the public.

• Partitions. A partition may be considered to constitute a "class" in the sense used

in object oriented systems and languages. However, it is closely modeled on the Ada

package, presenting, in an interface specification, the items which are made available for

J
J

f

2 OVERVIEW OF ADAPT 2

U

partition P is

end P;

partition body P is

begin

end P;

Figure 1: Sample Partition Declaration

its interaction with other system components. Thus its interface may contain procedures

and functions, task declarations, and constants and exception declarations. It may not

contain any object or type declarations. An outline of a partition declaration is shown in

Figure 1. To help in defining the initial configurat!9n of a partition instance, a partition

may have parameters (in parameters only), which are supplied by the program invoking
the allocator when a new instance of the partition is created. The partition is the unit of

distribution in AdaPT.

A partition is a library unit, and constitutes a type declaration. Other units may have

with clauses to give them access to the definition in the library, and within the scope of

the with clause they may declare variables of the type. However, the type is an implicit

access type, and no instance of the partition is created by such a declaration. Creation

of new instances of a partition are obtained by the use of new allocator statements, but

these are permitted only in the definition of nodes which are described in the following

paragraphs. Once a partition instance has been created, references to that instance may

be circulated by using an assignment statement to copy the value of one (access) variable

to another.

The use of library units "withed" by a partition leads to a special problem. Such packages

may have "state", and consequently cannot be shared safely between different instances of

a partition and between different partitions which may "with" the same unit. Thus, the
semantics of with clauses for partitions are different from those for packages in a normal

Ada program. All units in the transitive closure of the directed graph formed by the With

clauses of a partition, up to but not including any public unit or any other partition,

form part of the partition. These units are replicated as a whole with each replication of

the partition. 1 Each instance of a package or other object included in such a dependency

graph, belongs therefore to one and only one partition instance. In contrast therefore

to the public units described below, we sometimes refer to such packages as non-public

1We note that Ada 9x has-similar replication rules.

m

g

!

I

I

w

!

W

[]

m

m

!

m

W

II

!
W

II

m

II

im

B

Ill

mB
m

m

m
g

2 OVERVIEW OF ADAPT

v

W

w

II¢

m

node N is

end N;

with P;
node body N is

MY P : P := new P'PARTITION;

begin

end N;

Figure 2: Sample Node Declaration

units. 2

Nodes. Nodes differ very little from partitions. They too have features corresponding to

those of packages; like partitions they have separate interfaces and bodies, and instance

variables to reference them. However, nodes can create new instances of partitions and

other nodes. Their role is to serve as units which will eventually be compiled and linked

to form executable binary objects. They are thus the units of configuration in AdaPT.

Figure 2 shows a simple node definition which includes the creation of a partition instance.

Note again that MY_P is an access type which points to an instance of partition P. Thus,

to create the object to which MY_P points, we must create an object of the anonymous

type for partition P. This is accomplished using the attribute 'PARTITION.

The issue of system construction, start up and elaboration is described in AdaPT as a

normal Ada main program call for a first selected node, called the distinguished node; this

then "creates" others and so recursively until the whole system is elaborated.

Conformant Partitions. To support the provision of changed modes in a program,

particularly as a technique for recovery following failure of part of the system, partitions

can have "peers" which have identical interfaces but different bodies. In object oriented

terminology they would be of the same "type", possibly one a subtype of the other,

capable of providing the same set of actions for a client, albeit with different effect.

In AdaPT, a conformant partition has the same interface as the partition to which it

conforms, and access variables pointing to instances of conformant partitions may be

used interchangeably with access variables pointing to instances of the original partition.

An example of the creation of a conformant partition is shown in Figure 3.

It is likely that conformant partitions may give rise to extra overhead. Some provisions

may need to be made to explicitly note partitions which can not be determined to definitely

_The word private has, of course, other connotations in Ada, including AdaPT.

m

J

3 ADAPT AND THE REPLACEMENT PROCESS 4

m

partition P is

end P;

partition body P is

end P;

partition Q is P; -- Q ha, the same interface as P

partition body Q is -- Q may have a different body as well as different context clauses

begin

end Q;

W

W

W

I1

Figure 3: Conformant Partition Declaration

not have conformant peers.

Conformant Nodes. In exact analogy with the idea of conformant partitions, it is

proposed to support conformant nodes.

-Public Units. Partitions and nodes need to share certain ini_ormation, including type

information needed for the parameters. Neither unit is allowed, however, to declare types

in their specifications. In order to share information, a new unit entitled a public is

provided. To facilitate replication of a public across partitions and nodes, publics may

not contain any variable state. They may include types (except for access types), task

types, task access types, static constants, subprograms (including generic subprograms),

packages (which inherit the restrictions placed on public units), privates, exceptions,

renames, and pragmas. The context clause of a public unit may include only other public

units. Types in public units may be private, and may be defined along with operations

on them so that they are "abstract data types". An example of a public declaration is

shown in Figure 4.

3 AdaPT and the Replacement Process

AdaPT was designed to provide language support in the areas of program distribution and

configuration. The features of AdaPT which provide this support are the new program unit

constructs (publics, partitions, and nodes) and the use of the access variable paradigm as
a means of referring to specific instances of partitions and nodes. The first subsection below

m

llW

II

m_

I1

I

g

R
i
m

mm

m

!
!

I

g

ll

ll
J

z

m

m

!

II

3 ADAPT AND THE REPLACEMENT PROCESS

public P is

end P;

public body P is

end P;

m

w

Figure 4: Public Declaration

will discuss the usefulness of these constructs in providing for replacement of program modules

while the program remains on-line.

In order to achieve on-line upgrades, support for dynamic allocation and deallocation of

program modules is necessary and will be discussed in separate subsections below.

3.1 AdaPT's Support For Program Configuration

The strength of AdaPT's support for program configuration lies in its explicit definition of

typed modules for program distribution (partitions) and configuration (nodes), and in its use
of access variables to refer to instances of those typed program modules. Because partition

and node instances are instances of a type, they may be manipulated by the program itself at

runtime. Instances of these types may be created in an orderly manner using the allocator, and

a single access variable may be made to refer to different instances of a partition by changing the
value of that access variable 3. Program reconfiguration can thus be accomplished by changing

the values of a set of access variables in an orderly manner.

m

v

3.2 Operation of the Allocator

The original definition of AdaPT merely stated that instances of partitions and nodes were

created by the use of an allocator. This allocator was responsible for performing all the necessary

steps for creating and initializing the unit being created. The allocator then returned a pointer
to the unit thus created. No more detailed mention was made as to the means by which unit

instantiation was accomplished.

To provide the capability of an on-line upgrade of a program module, it is necessary for

an executing AdaPT program to be able to dynamically link with and load object code which

nit should be remembered that although an access variable may refer to an instance of a partition or node,

that instance's existence is not dependent on that access variable. Thus, multiple access variables may refer to

a single instance. However, if a situation occurs in which no access variable refers to an instance of a partition

or node, there is no mechanism for rediscovering that instance, and that instance is lost to the program.

w

4 THE REPLACEMENT PROCESS 6

was not in existence when the program's execution was first initiated. To provide executing

AdaPT programs with this ability, we interpret the definition of the allocator to be such that

it causes the underlying AdaPT run-time system to search the program library for the most

recent version of the object code corresponding to the program unit of which the allocator is

creating an instance. This object code will then be loaded onto the physical processor, and
elaboration of the program unit instance will proceed according to the rules set forth in [1].

m

m

I

m

g

3.3 Deallocation of Partition Storage

The original definition of AdaPT in [1] made the implicit assumption that, once in use, par-
tition instances are never discarded. Thus, no method for deallocating partition instances

was discussed. There are several outstanding issues associated with such deal_location which

merit further study, in this report, we will not address those issues. However, to pro-

vide a flavor of the possible use of such deallocation, we make use of a variant of Ada 83's

UNCHECKED_DEALLOCATION procedure. 4 The procedure we will use has this form:

generic
type NAME is partition;

procedure UNCHECKED_DEALLOCATION(X : in out NAME);

An instantiation of this generic procedure is made using the name of the partition type that

will be deallocated. (Recall that a partition declaration defines an access type to an anonymous

type.)

4 The Replacement Process

Having presented an overview of AdaPT, we now begin a discussion of the replacement process

itself. First, we discuss five parameters which may be used to characterize the replacement

process. We then use these parameters to form a taxonomy of the replacement process.

4.1 Characterization of the Replacement Process

The complexity of the general problem of program module replacement is due to the wide variety

of situations under which the replacement process must occur. The study of this problem can

be simplified by breaking it down into a number of cases. To allow the problem space .to be

broken down, we have determined five parameters which can be used to classify instances of

the problem. These parameters are:

• the type of replacement,

_See [2] for additional discussion of this issue.

m

I

i

l

U

D

i

I
m

we

!
i

J

i

!
u

m
m

II

i
i

i

w

i

4 THE REPLACEMENT PROCESS 7

w

w

w

v

m

Y_

m

• the type of module to be replaced,

• the location of the replacement module(s),

• the need for a replacement module's state to match that of the module it is replacing,

and

• the degree of change involved between the specification of the original module and the

specification of its replacement.

These five parameters will be explained below.

Types of Replacement

We divide replacement processes into two types: planned and unplanned. A planned replacement

is one where the system knows about the upcoming replacement before the module to be

replaced is deactivated. An unplanned replacement is one where the system does not know of

the need for the replacement until the module in question is found to be no longer in service. The
main difference between these two cases is that the system designer typically has more options

open to him in the planned case due to the fact that the original module is still available for use.

An example of a planned replacement is that of an operator instructing the system to replace

a program module with a new version of that module. (This new version would presumably

incorporate bug fixes, expanded capabilities, etc.) An example of an unplanned replacement

is that of a loss of power to a physical machine. The latter would result in the unexpected

loss of all system functions resident on that processor. Our present work is focused on planned

replacements, i.e. upgradesl

Kinds of Replacement Modules

The design of AdaPT provides two syntactic units that can be replaced, nodes and partitions.

These are the only module types whose replacement will be considered in this discussion. The

replacement of a node will usually require the replacement of its partitions.

Possible Locations

There are three possible situations regarding the location of the replacement module(s):

• local, meaning the replacement module is to reside on the same node as the module being

replaced,

• remote, meaning the replacement module is to reside on a different node from the module

being replaced, and

w

w

4 THE REPLACEMENT PROCESS 8

• multiple remote, meaning that various portions of a node are replaced by modules on

different nodes.

State

There are significant differences in the replacement process depending upon the role of state in

the module being replaced. There are two different cases to be considered:

• The module to be replaced has no state and creates no state via the allocator.

• The module to be replaced contains state whose consistency must be maintained through-

out the replacement process.

ul

I

mm
g

I

III

Module Specifications

As a program evolves over time, changes will be made to various modules of that program.

These changes fall into three categories:

changes in which the module's specification remains unchanged, as in conformant parti-
tions in AdaPT,

changes in which the module's specification is extended, i.e. items are added to the

module's specification, as in inheritance in object oriented languages, and

changes in which the module's specification is reduced, i.e. items are removed from the

module's specification, as is permitted in some object oriented languages.

A fourth category, where some items are added to the module's specification while other items

are removed, is merely a composition of the second and third categories listed above. We will

therefore not address this fourth category separately.

m

m

W

i
m
i
n

U

m

g

m
mm
W

4.2 Taxonomy of the Replacement Process

In the previous section, we presented five parameters of the replacement process. In our dis-

cussions of these parameters, we listed the possible values these parameters may take on. Any

instance where a module is to be replaced may be classified by listing the values of these param-

eters. Because there are a finite number of parameters, and a finite number of values for those

parameters, there is a finite number of combinations of those parameters values. Additionally,

some combinations of parameter values will not occur.

To aid in understanding what cases are possible, we have created the acyclic directed graph

shown in Figure 5. In this graph, the vertices other than "Enter" and "Exit" represent the

IB

IB

|

!

W

|

i
II

mB

!
II

r

i

r

m

m

4 THE REPLACEMENT PROCESS

Figure 5: Reconfiguration Situation Classification Graph

possible values for the five parameters of the replacement process, with the vertices representing
values corresponding to the same parameter being placed at the same level as measured from

the "Enter" vertex. The arcs connecting the nodes represent possible combinations, i.e. the

presence of an arc from "Partition" to "Remote" indicates that this combination of values is

permissible, while the absence of an arc from "Partition" to "Multiple Remote" indicates that

this combination is not permissible. A path describing a module replacement situation may
be obtained by traversing the graph from vertex marked "Enter" to the vertex marked "Exit".

At each vertex encountered during the traversal, the path should follow the arc to the vertex

which represents the parameter value corresponding to the situation being classified, or the arc
to "Exit" in the case of the last level of vertices.

Our approach to the replacement problem is to investigate the various possible cases to

learn what techniques are needed to solve that particular case. These techniques can then be

m

5 PARTITION REPLACEMENT 10

m

Client Node

Client Partition i

Control Node

Registration Partition I

Server Node

IServer Partiti°nll IServer Partiti°n21

1
E

m

J

m

ql

I

U

Figure 6: Physical placement of partitions and nodesl

applied to solve the general case. In the next section, we present a solution to one of the possible

module replacement situations;

5 Partition Replacement

5.1 Description

In our previous work[3] we supplied a solution to stateless partition replacement. In this section

we build upon that solution by introducing partition replacement with state. Specifically, we will

show the replacement of local server and client partitions while maintaining state information

across replacement instances.

Our system will consist of 3 Nodes and several partitions. The nodes include a client node,

a server node, and a controller node, each with at least one partition as shown in Figure 6.

The controller node is designated as tl_e distinguished:node. Upon allocation by the run-time

system, the controller node creates the other two nodes. The control node also initiates the

replacement process, presumably through interaction with the user. : :

In our solution, all client routines (users of the server routines) reside on partitions on the

client node. Our protocol could have several client nodes, each with varying number of client

partitions. In order to simplify our example, we include only one client node and one client

partition. In the first example, the client partition is not replaceable. The second example

provides for replaceable client partitions.

The server node contains two partitions and they are are independently replaceable. Re-

placement is complicated since clients must be notified of the change and given access to the

I

n

w

m

U

w

z

W

m

I

U

I

n
i

u

|

|

L .

m

m

5 PARTITION REPLACEMENT 11

replacement. As there may be many client routines in the general case, explicit client noti-

fication of server changes was deemed too costly. Our solution implicitly notifies clients of a

server change through an "out" parameter on normal service routine calls. This parameter

consists of a reference to the latest server partition instance. If there is not a replacement in

progress, the server partition passes back a reference to itselfl If a replacement is in progress,

the server partition redirects the service call to the replacement and returns a reference to the

replacement.

During replacement, the replaced server partition instance can not be deallocated until all

potential clients have been notified of the change. Our solution requires that clients "register"

through a registration partition. The registration partition is created by the controller node and

is not replaceable in our present solution. The server node informs the registration partition of

the initial server partition instance and of any later server partition changes. Upon registration,

the clients are given access to the latest server partition instance and the server partition is

notified so that it can track the number of clients registered with it.

As clients are redirected during a replacement they are automatically registered with the

replacement and deregistered from the replaced partition. The replaced partition can be deal-
located as soon as all clients have been redirected (count of currently registered clients is zero).

Since redirection occurs during service calls, the amount of time that both old and new partition

instances are both active depends on the maximum amount of time between service calls for any

registered clients. If this is an unacceptably long period of time or if a client no longer needs

a service, a direct deregistration option is also provided to the client. If a client deregisters, it

must register again before using the service routine.

This solution assumes that the clients will not send a second request until they have received

a reply to their first request. If the clients did not wait for the reply to their request some
other mechanism would have to be used to determine when a server partition could be safely

deallocated. To avoid obscuring the objective of our example, i.e.. to study the underlying

mechanisms, we chose not to include such considerations in this example.

5.2 Replaceable Server Partitions

In this section we give the solution for replaceable server partitions. The solution consists of

the following AdaPT units:

• package LOCKER,

• public SERVERI_PUBLIC,

• public SERVER2_PUBLIC,

• partition SERVERI_PARTITION,

• partition SERVER2_PARTITION,

w

5 PARTITION REPLACEMENT 12

• partition CLIENT_PARTITION,

. partition REGISTRATION_PARTITION,

• node SERVER_NODE,

• node CLIENT_NODE,

• node CONTROL_NODE,

The package LOCKER is used to provide control over shared variables similar to the

Readers-Writers problem. General solutions to the Readers-Writers problem can be found

elsewhere. The implementation we are using is given below.

-- This package provides a simple solution to the readers-writers problem.
-- It is modelled after the solution in Barnes' "Programming in Ada", 3rd ed.

package LOCKER
task type LOCK is

entry READ;

entry WRITE;
entry DONE;

end LOCK;
end LOCKER;

package body LOCKER is
task body LOCK is

NO WRITE : BOOLEAN := FALSE;
READERS : NATURAL := 0;

begin
accept WRITE;

accept DONE;
CONTROL:

loop
select

accept READ;
READERS := READERS + 1;

OF

or

accept DONE;
READERS := READERS - 1;

accept WRITE do
CLEAR READERS:
while READERS > 0 loop

accept DONE;
READERS := READERS - 1;

end loop CLEARREADERS;
end WRITE;

accept DONE;
end select;

end loop CONTROL;

end LOCK;
end LOCKER;

As stated previously, a registration partition is used to control access to the service routines.

Clients are expected to register with a server through a call to the appropriate registration

m
g

J

m

g

m

I

g

a

n
m

m

J

W

R

m

i

I

g

m

J

g

B

|

5 PARTITION REPLACEMENT 13

routine. Registration returns access to the latest service partition ingtance and allows the

server partition to track the number of clients.

The registration partition is given below. It is intended to be a partition within the control

node, which is supplied later in this section. The SET_INSTANCE routine is called by the

control or server node to inform the registration partition of the latest instance of a service

partition. The REGISTER routine is called by clients to gain access to the latest instance.

In order to simplify our example, the registration partition is non-replaceable. It could be

viewed as a service routine and be made replaceable using much the same techniques as we

show for the replaceable server partitions.

Letting SERVERI_PARTITION and SERVER2_PARTITION be defined later, the registra-

tion partition has the following form.

with SERVERI_PARTITION;
with SERVER2_PARTITION;
partition REGISTRATION_PARTITION is

package SERVER1 is
function REGISTER return SERVERI_PARITION;
procedure SET_INSTANCE (NEWSERVER : in SERVERI_PARTITION);

end SERVERI;

package SERVER2 is
function REGISTER return SERVER2_PARITION;
procedure SET_INSTANCE (NEW SERVER : in SERVER2_PARTITION);

end SERVER2;

end REGISTRATION_PARTITION;

with SERVERI_PARTITION;
with SERVER2_PARTITION;
with LOCKER;
partition body REGISTRATION_PARTITION is

package SERVER1 is
CURRENT_PARTITION : SERVERI_PARTITION;

PARTITION_LOCK : LOCKER.LOCK;

-- reference to current instance

--- r/w control task

---- inform latest instance and return referenct to latest instance

function REGISTER return SERVERI_FARITION
begin

PARTITIONLOCK .READ;

CURRENT_PARTITION.REGISTER;
PARTITION_LOCK .DONE;
return CURRENT_PARTITION;

end REGISTER;

-- a new instance has been created.

procedure SET INSTANCE (NEW SERVER : in SERVERI_PARTITION);
begin

PARTITION_LOCK .WRITE;

CURRENT_PARTITION := NEW SERVER;

PARTITION_LOCK .DONE;

w

w
5 PARTITION REPLACEMENT 14

end SET_INSTANCE;
end SERVER1;

package SERVER2 is
-- same as the Serverl package except with Server2._Partition.

end SERVER2;

end REGISTRATION_PARTITiON;

i
I

l

w

m

Sample client partition and node routines are given below. At this point the only require-
ment for the client routines is that they register with the registration partition prior to using

the server partition. In the next section, the client partitions are made replaceable.

with REGISTRATION_PARTITION;
partition CLIENT_PARTITION (REGISTRATION : in REGISTRATION_PARTITION);

with REGISTRATION_PARTITION;
with SERVERI_PARTITION;
with SERVER2_PARTITION;

partition body CLIENTPARTITION (REGISTRATION : in REGISTRATION_PARTITION) is

task COMPUTE;
task body COMPUTE is

DATA:

-- Register and obtain latest instance of the server partition

SERVER1 : SERVER1 PARTITION := REGISTRATION.SERVER1.REGISTER;
SERVER2 : SERVER2_PARTITION := REGISTRATION.SERVER2.REGISTER;

begin
loop

-- Perform normal execution, including service calls

SERVER1 .SERVICE_PROCEDURE(DATA,SERVER1);
SERVER2.SERVICE_PROCEDURE(DATA,SERVER2);

end loop;
end COMPUTE;

end CLIENTPARTITION;

with REGISTRATION_PARTITION;

node CLIENTNODE (REGISTRATION : in REGISTRATION_PARTITION);

with CLIENT_PARTITION;
with REGISTRATION_PARTITION;

node body CLIENT_NODE (REGISTRATION : in REGISTRATION PARITION) is

CLIENT : CLIENT_PARTITION := new CLIENT_PARTITION'PARTiTION(REGISTRATION);

end CLIENTNODE;

As we noted earlier, there are two service partitions entitled SERVERi'PARTITION and

SERVER2_PARTITION. We show only the code for the first. SERVER2_PARTITION would

be very similar, differing only in implementation of actual service routines.

m

I

U

m
m
m

J

J

D

U

==

m

R

m

m

!
I

I
m

I
!

i

m

U

|

!

|

"- 5 PARTITION REPLACEMENT 15

z "

---,__

_d

w

t

i

m
w

The service partitions may include state which needs to be maintained across replacements.

Because partitions may not include types in their specifications, publics are used to declare the

state data types. SERVERI_PUBLIC is given below.

public SERVERI_PUBLIC is
type SERVERI_DATA is

record

-- state data for Server1
end record;

end SERVERI_PUBLIC;

Below is the specification of SERVERI_PARTITION, followed by a brief description and its

body.

with _ERVERI_PUBLIC;

partition SERVERI_PARTITION is

procedure SERVICE_PROCEDURE (PARAM_DATA : in out INTEGER;
GALL NEXT : out SERVERI_PARTITION);

procedure INITIALIZE(SELFREFERENCE : in SERVERI_PARTITION;
INITIAL_DATA : in SERVERI_PUBLIC.SERVERI_DATA:=(...));

procedure REPLACE(REPLACEMENT : in SERVERI_PARTITION);

procedure REGISTER;
procedure DEREGISTER;

procedure BLOCK_FORZERO_CLIENTS;

end SERVERI_PARTITION;

Note that the service routine contains an out parameter of SERVERI_PARTITION type.

This is used to return to the client a reference to the latest service partition instance. If no

replacement is in progress a reference to the same partition instance (self-reference) is returned.

If a replacement is in progress a reference to the replacement instance is passed back to the
client.

The INITIALIZE routine passes in a self-reference and state data to the partition instance.
Initialization must be made before service routines are handled. If no second parameter is given,

default data is used.

The REPLACE procedure is used to inform a partition instance that it is being replaced.

A reference to the replacement instance is passed in. The replaced partition uses that reference

to initialize the replacement with the current state data and redirects any further service calls

to the replacement.

The REGISTER and DEREGISTER routines are used to internally track the number of

clients currently registered with this particular instance of the server partition. The routine

5 PARTITION REPLACEMENT 16

BLOCK_FOR_ZERO_CLIENTS will not return until the number of clients currently registered

is zero. At that point this partition instance can be safely deallocate&

Below is the body of SERVERI_PARTITION.

with LOCKER;

with SERVERI_PUBLIC;
partition body SERVERI_PARTITION is

STATE__DATA : SERVERI_PUBLIC.SERVERI_DATA;

-- reference to the latest active partition. Scl£-ref_erence un_.tjl- a
-- replacement is in progress. Redirect used to note that a replacement

-- is in progress while ACTIVELOCK is a read/write control task.
ACTIVE_PARTITION : SERVERI PARTITION;
REDIRECT : BOOLEAN := FALSE;

ACTIVE_LOCK : LOCKER.LOCK;

task COORDINATOR is

entry REGISTERENTRY;

entry DEREGISTER_ENTRY;
entry ZERO_CLIENTS_ENTRY;

end COORDINATOR_TYPE;
task body COORDINATOR is

NUM_CLIENTS : NATURAL :-- 0;

begin
loop

select

accept REGISTERENTRY;
NUM_CLIENTS := NUM CLIENTS % 1;

or

or

accept DEREGISTER_ENTRY;

NUM_CLIENTS := NUM_CLIENTS - 1;

when NUM_CLIENTS := 0 =>
accept ZERO_CLIENTS_ENTRY;

end select

end loop;
end COORDINATOR;

-- Normal service procedure. Call Next is used to note which

-- partition instance the cllent should use on the ,next call.
procedure SERVICEPROCEDURE (PARAM_DATA : in out INTEGER;

CALL_NEXT : out SERVERI_PARTITION) is

begin

-- if replacement in progress, deregister client from this server,
-- register with and redirect service call to replacement.
ACTIVELOCK.READ;
if REDIRECT then

COORDINATOFt.DEREGISTER ENTRY;

ACTIVE_PARTITION.REGISTER;
ACTIVE PARTITION.SERVICE_PROCEDURE(PARAM_DATA,ACTIVE_ PARTITION);

else
Perform Normal Service

end if;
CALL_NEXT :- ACTIVE_PARTITION;

I

U

J

I

U

I

i

J

I

g

m

m
!

g

D
m

W

J

ai

U

m

i

J

I

I

J

i

5 PARTITION REPLACEMENT 17

i

ACTIVELOCK.DONE;
end SERVICE_PROCEDURE;

--- Send in a self partition reference and initialize state data. Must be
-- called before a normal service is performed.

procedure INITIALIZE(SELF REFERENCE : in SERVERI_PARTITION;
INITIAL_DATA : in SERVERI_PUBLIC.SERVERI_DATA:=(...)) is

begin
ACTIVE_LOCK.WRITE;
ACTIVEPARTITION := SELF_REFERENCE;
STATE_DATA := INITIAL_DATA;
ACTIVE_LOCK .DONE;

end INITIALIZE;

-- Start the shutdown process on this partition and initialize the

-- replacement server with current state data.
procedure REPLACE(REPLACEMENT : in SERVERI_PARTITION) is
begin

ACTIVE_LOCK.WRITE;
REDIRECT := TRUE;
ACTIVE PARTITION := REPLACEMENT;

ACTIVE_PARTITION.INITIALIZE_PARTITION(ACTIVE_PARTITION,STATE_DATA);
ACTIVE_LOCK.DONE;

end REPLACE;

procedure REGISTER is
begin

C O ORDINATOR. REG ISTER ENTRY;
end REGISTER;

procedure DEREGISTER is

begin
COORDINATOR.DEREGISTER_ENTRY;

end DEREGISTER;

procedure BLOCK_FOR_ZERO_CLIENTS is
begin

COORDINATOR.ZERO_CLIENTS_ENTRY;

end BLOCK_FOR_ZERO_CLIENTS;

end SERVERI_PARTITION;

=

m
L _

In our solution, the server partitions are created by the server node. When a replacement

is initiated, the server node creates the new partition and informs the registration partition of

the change. It then directs the replaced partition instance to initialize its replacement with the

current state data and to start redirecting service calls. When all clients have been directed to

the replacement, the replaced partition can be deallocated.

The code for SERVER_NODE is given below. Note that it contains two replacement tasks,

corresponding to the two server partitions. The only difference between the two tasks is in the

types of partitions to be replaced.

with REGISTRATION_PARTITION;

5 PARTITION REPLACEMENT

node SERVERNODE (REGISTRATION : in REGISTRATION_PARTITION) is

procedure REPLACE_SERVER1;
procedure REPLACE_SERVER2;

end SERVER_NODE;

18

m

I

with SERVERI_PARTITION;
with SERVER2_PARTITION;
with REGISTRATION PARTITION;

node body SERVER_NODE (REGISTRATION : in REGISTRATIONPARTITION) is

-- task to control the replacement of serverl_partition
task SERVERI_REPLACEMENT is

entry FINISHED_SETUP;
entry STARTREPLACEMENT;

end SERVERI_REPLACEMENT;
task body SERVERI_REPLACEMENT is

CURRENT_PARTITION : SERVERI_PARTITION;

OLD_PARTITION : SERVER1 PARTITION;

begin
-- create initial instance, inform registration partition, and initialize
CURRENT PARTITION := new SERVERI_PARTITION'PARTITION;

REG ISTRA-'TION.SERVER1 .SET_INSTANCE(CURRENT_PARTITION);

CURRENT_PARTITION .INITIALIZE(CURRENT_PARTITION);

accept FINISHED SETUP;
loop

accept START_REPLACEMENT;
OLD PARTITION := CURRENT_PARTITION;
CURRENT PARTITION := new SERVERI_PARTITION'PARTITION;
REG ISTRA-TION.SERVER1 .SET_INSTA NCE(CURRENT_PARTITION};

-- Directs old partition to initialize its replacement and to start
-- redirecting service calls.
OLD_PARTITION.REPLACE(CURRENT PARTITION);

-- Blocks until all clients have been redirected to replacement.

OLD_PARTITION .BLOCK_FORZERO_CLIENTS;
UNCHECKED_DEALLOCATION(OLD_PARTITION);

end loop;
end SERVERI_REPLACEMENT;

-- Same as for Serverl, substituting SERVER2_PARTITION for SERVERI_PARTITION

task SERVER2_REPLACEMENT is

end'"SERVER2_REPLACEMENT;

procedure REPLACE_SERVER1 is

begin
SERVERI_REPLACEMENT.START_REPLACEMENT;

end REPLACE_SERVER1;

procedure REPLACE_SERVER2 is
begin

S ERVER2_REPLACEMENT.START_ REPLACEMENT;

end REPLACE SERVER2;

begin
SERVERI_REPLACEMENT.FINISHED_SETUP;

SERVER2_REPLACEMENT.FINISHED_SETUP;

end SERVER_NODE;

g

m

w

l

U

m
i
n

g

mm
im
m

g

I
I

W

I

w

m

J

m

M

U

m

w

5 PARTITION REPLACEMENT 19

_=

u

!

The overall system is controlled through the node CONTROL_NODE which is designated

as the distinguished node. It's elaboration by the run-time system results in elaboration and

initialization of the other nodes and partitions.

node CONTROLLER_NODE is

pragma DISTINGUISHED;
end CONTROLLER_NODE;

with CLIENT_NODE;

with SERVER_NODE;
with REGISTRATION_PARTITION;

node body CONTROLLER_NODE is

--- create registration partition and client node.
REGISTRATION : REGISTRATION_PARTITION:= new REGISTRATIONPARTITION'PARTITION;

CLIENTS: CLIENT_NODE := new CLIENT_NODE'NODE(REGISTRATION);

-- handles interrupt to initiate server partition replacement
task REPLACEMENT is

entry SERVER1;
for SERVER1 US at ...;

entry SERVER2;
for SERVER2 US at ...;

end REPLACEMENT;

task body REPLACEMENT is
SERVERS : SERVERNODE;

begin
SERVERS := new SERVER_NODE'NODE(REGISTRATION);

loop
select

accept SERVER1 do

SERVERS.REPLACE_SERVER1;
end SERVER1;

or

accept SERVER2 do

SERVERS.REPLACE_SERVER2;
end SERVER2;

end select;
end loop;

end REPLACEMENT;

end CONTROLLER_NODE;

The control node initiates the replacement process through the handling of an interrupt

and calls the appropriate routine in the server node. The server node creates the replacement,

informs the registration partition and starts its internal replacement task. The replacement

task informs the replaced partition of the change and waits for all clients to be directed to the

replacement, at which time the replaced partition can be deallocate& Note that initialization

of the replacement partition instance with current state data is handled directly by the replaced

instance.

m

5 PARTITION REPLACEMENT 20

In this section we have shown a solution to the replacement of server partitions. In the next

section we show how client partitions can also be made replaceable.

5.3 Replaceable Client Partitions

Replacement of client partitions is potentially simpler than replacement of server partitions. If

the only routine to call a client partition is the node which created it, then a replaced client

partition instance can be deallocated as soon as the node has directed it to pass its state data to

the replacement instance. If other routines had access to the client partition, then they must be

informed of the change before the replacement instance is deallocate& If an unknown number

of routines may have access, then a registration scheme would need to be implemented in much

the same fashion as server partition replacement.

In our solution, the only Changes necessary to make the client nodes replaceable are to the

control node, which initiates replacements, and to the client partitions and node themselves.

No change to the server partitions, server node, or registration partition is necessary. We have

also generalized our solution to two client partitions.

public CLIENTI_PUBLIC is
type CLIENTDATA is

record

X : INTEGER;

Y : INTEGER;
end record;

end CLIENTI_PUBLIC;

with REGISTRATION_PARTITION;

with CLIENTI_PUBLIC;
partition CLIENTI_PARTITION (REGISTRATION : in REGISTRATION_PARTITION) is

procedure INITIALIZE (DATA: in CLIENT1 PUBLIC.CLIENT_DATA := (...));
procedure REPLACE (REPLACEMENT : C_ENT_PARTITION);

end CLIENT1 PARTITION;

wlth REGISTRATIONPARTITION;
with SERVERI_PARTITION;

with SERVER2_PARTITION;
with CLIENT1 PUBLIC;
partition body CLIENT1 PARTITION (REGISTRATION : in REGISTRATION_PARTITION) is

STATE_DATA : CLIENTPUBLIC.CLIENT_DATA;

SERVER1 : SERVERI_PARTITION;
SERVER2 : SERVER2_PARTITION;

task COMPUTE is : -

entry START;

entry STOP;
end COMPUTE;
task body COMPUTE is

begin
accept START;
SERVER1 := REGISTRATION.REGISTER_SERVER1;

J

J

mm

U

U

J

g

I

W

i

g

m

mmm

m
m
m

I

J

m

u

U

z

m

m

5 PARTITION REPLACEMENT 21

--4

U

SERVER2 := REGISTRATION.REGISTER_SERVER2;

loop
select

accept STOP;
SERVER1 .DEREGISTER;

SERVER2.DEREGISTER;

exit;
else

-- Perform normal execution, including service calls

SERVER1 .SERVICE_PROCEDURE(STATE_DATA.X,SERVER1);

SERVER2.SERVICE_PROCEDURE(STATE_DATA.Y,SERVER2);
end select;

end loop;
end COMPUTE;

-- Initialize with data. Use default data if necessary.
procedure INITIALIZE (DATA: in CLIENTI_PUBLIC.CLIENT_DATA := (...)) is

begin
STATEDATA := DATA;
COMPUTATION.START;

end INITIALIZE;

-- Start the shutdown process on this partition and initialize the

-- replacement server with current state data.
procedure REPLACE (REPLACEMENT : CLIENT_PARTITION) is
begin

COMPUTE.STOP;
REPLACEMENT.INITIALIZE(STATE_DATA);

end REPLACE;

end CLIENTI_PARTITION;

with REGISTRATION_PARTITION;
node CLIENT NODE (REGISTRATION : in REGISTRATION_PARTITION) is

procedure REPLACE_CLIENT1;

procedure REPLACE_CLIENT2;
end CLIENT_NODE;

with CLIENTI_PARTITION;
with CLIENT2_PARTITION;
with REGISTRATION_PARTITION;
node body CLIENT_NODE (REGISTRATION : in REGISTRATION_PARTITION) is

task CLIENTI_REPL_CEMENT is
entry START_REPLACEMENT;

end CLIENTI_REPLACEMENT;
task body CLIENT1 REPLACEMENT is

CURRENT_PARTITION : CLIENTI_PARTITION;
OLD_PARTITION : CLIENTI_PARTITION;

begin
-- Create initial partition instance and Initialize with default data
CURRENT_PARTITION :-- new CLIENTI_PARTITION'PARTITION(REGISTRATION);

CURRENT_PARTITION.INITIALIZE;

loop
accept START_REPLACEMENT;

--4

m

5 PARTITION REPLACEMENT

OLDPARTITION := CURRENT_PARTITION;
CURRENTPARTITION := new CLIENTI_PARTITION'PARTITION(REGISTRATION);

-- directs the old partition to intitialize its replacement

OLD_PARTITION.REPLACE(CURRENT_PARTITION);

UNCHECKED_DEALLOCATION(OLD PARTITION);

end loop;
end CLIENTI_REPLACEMENT;

task CLIENT2_REPLACEMENT is
-- Same as for Clientl, using CLIENT2_PARTITION

end CLIENT2_REPLACEMENT;

procedure REPLACE_CLIENT1 is

begin
CLIENT1 RELACEMENT.START REPLACEMENT;

end REPLACE_CLIENT1;

procedure REPLACE_CLIENT2 is

begin
CLIENT2_RELACEMENT.START_ REPLACEMENT;

end REPLACE_CLIENT2;

end CLIENTNODE;

node CONTROLLER_NODE is

pragma DISTINGUISHED;
end CONTROLLER_NODE;

with CLIENT_NODE;
with SERVERNODE;
with REGISTRATION_PARTITION;
node body CONTROLLERNODE is

-- create the registration partition
REGISTRATION: REGISTRATION_PARTITION :-- new REGISTRATION_PARTITION'PARTITION;

task REPLACEMENT is

entry SERVER1;
for SERVER1 US at ...;

entry SERVER2;
for SERVER2 US at ...;

entry CLIENT1;
for CLIENT1 US at ...;

entry CLIENT2;
for CLIENT2 US at ...;

end REPLACEMENT;

task body REPLACEMENT is
SERVERS : SERVER_NODE;
CLIENTS: CLIENT_NODE;

begin
-- create the server and client nodes. They in turn create the

-- client and server partitions
SERVERS := new SERVER_NODE'NODE(REGISTRATION);
CLIENTS := new CLIENT NODE'NODE(REGISTRATION);

loop

22

m

g

g

I

u

g

U

t

m

g

I

J

I

I

i

J

m

M

m
J

g

z

m
U

6 NODE REPLACEMENT

select
accept SERVER1 do

SERVERS.REPLACE_SERVER1;
end REPLACE_SERVER1;

or
accept SERVER2 do

SERVERS.REPLACE_SERVER2;
end REPLACE_SERVER2;

or

accept CLIENT1 do
CLIENTS.REPLACE_CLIENT1;

end REPLACE_SERVER2;
or

accept CLIENT2 do
CLIENTS.REPLACE_CLIENT2;

end REPLACE_SERVER2;
end select;

end loop;
end REPLACEMENT;

end CONTROLLER_NODE;

23

m

r_
w

m

w

m
B

i

m

Vk_

6 Node Replacement

In this section, we illustrate online replacement of the server node. Upon server node replace-

ment, a new server node instance is created along with its corresponding new server partition

instances. The replaced server node instance then directs a remote replacement of its partitions

with the corresponding partitions on the new node. Once all clients (of both server partitions)

have been redirected to the new server partitions, the replaced node deallocates its partitions

and the control node deallocates the server node.

Only the server node and control node require changes from the server partition replacement
introduced earlier. Revised versions of these nodes are presented below.

with REGISTRATION_PARTITION;
node SERVER_NODE (REGISTRATION : in REGISTRATION_PARTITION) is

procedure REPLACE_SERVER1;

procedure REPLACE_SERVER2;

procedure REPLACE_NODE;
procedure INITIALIZE_PARITITIONS;

end SERVERNODE;

with SERVERI_PARTITION;

with SERVER2_PARTITION;
with REG ISTRATION_PARTITION;
node body SERVER_NODE (REGISTRATION : in REGISTRATION_PARTITION) is

task SERVERI_REPLACEMENT is

entry FINISHED_SETUP;
entry INIT_PARTITION;

entry LOCAL;
entry REMOTE (NEW_PARTITION : in SERVERI_PARTITION);

r=
D

z
w

6 NODE REPLACEMENT

entry FINISHED_REMOTE;
end SERVER1 REPLACEMENT;

task body SERVER1 REPLACEMENT is
CURRENT_PARTITION : SERVER1 PARTITION;

OLD_PARTITION : SERVERI_PARTITION;

begin
CURRENT PARTITION := new SERVERI_PARTITION'PARTITION;

REGISTRA-TION,SERVER1.SET_INSTANCE(CURRENT_PARTITION);

accept FINISHED SETUP;

loop
select

accept INIT PARTITION;
CURRENT_PARTITION.INITIALIZE(CURRENT_PARTITION);

or

accept LOCAL;
OLDPARTITION := CURRENT_PARTITON;
CURRENT PARTITION := new SERVERI_PARTITION'PARTITION;
REGISTRA'-TION.SERVER1.SET_INSTANCE(CURRENT_PARTITION);

-- Directs old partition to initialize its replacement and to start

-- redirecting service calls.
OLD_PARTITION.REPLACE(CURRENT_PARTITION);

-- Blocks until all clients have been redirected to replacement.

OLD_PARTITION.BLOCK FOR_ZERO_CLIENTS;

UNCHECKED_DEALLOCATION(OLD_PARTITION);
or

accept REMOTE (NEW_PARTITION : in SERVER1 PARTITION) do

OLDPARTITION := CURRENT_PARTITION;
CURRENT_PARTITION := NEW_PARTITION;

end REMOTE;

-- Directs old partition to initialize its replacement and to start

-- redirecting service calls.

OLD_PARTITION.REPLACE(CURRENT_PARTITION);

-- Blocks until all clients have been redirected to replacement.

OLD_PARTITION.BLOCK FOR_ZERO CLIENTS;
UNCHECKED DEALLOCATION(OLD_ PARTITION);

accept FINISHEDREMOTE;
end select

end loop;

end SERVER1 REPLACEMENT;

procedure REPLACE_SERVER1 is

begin
SERVERI REPLACEMENT .LOCAL;

end REPLACE_SERVER1;

-- Same as for Serverl, substituting SERVER2 PARTITON for SERVERI_PARTITION

task SERVER2 REPLACEMENT is...

procedure REPLACE_SERVER2 is...

-- Only want the partitions intialized with default data (this routine)

-- if this was the very first server node created. In other cases,
-- the replaced partitions will directly initialize the new paritions.

procedure INITIALIZE_PARITITIONS is

begin
SERVERI_REPLACEMENT.INIT_PARTITION;

24

J

m

m

u

I

m
J

I

m

U

t

m

u

m

m

m

m

U

g

m

m

l

m

U

L_

i

L ffi

m
V_g

F .

m

m
!

6 NODE REPLACEMENT

SERVER2_REPLACEMENT.INIT_PARTITION;
end INITIALIZE_PARITITIONS;

-- Inform this node that it is being replace. Obtain references to the
-- new service partitions and perform a remote replacement to them.
-- This routine will not return until all clients have been redirected
-- to the new partitions and the local partitions have been deallocated.
-- This node can therefore be safely deallocated upon return.

procedure REPLACE_NODE is
NEW_SERVER1 : SERVERI_PARTITION;

NEW_SERVER2 : SERVER2_PARTITION;
begin

NEW_SERVER1 := REGISTRATION_PARTITION.SERVER1.REGISTER;

NEW_SERVER2 := REGISTRATION_PARTITION.SERVER2.REGISTER;

SERVERI_REPLACEMENT .REMOTE(NEW SERVER1);
SERVER2_REPLACEMENT.REMOTE(NEW_SERVER2);

SERVERI_REPLACEMENT.FINISHED_REMOTE;

SERVER2_REPLACEMENT.FINISHED_REMOTE;

NEW_SERVER1 .DEREGISTER;
NEW_SERVER2.DEREGISTER;

end REPLACENODE;

begin
SERVERI_REPLACEMENT.FINISHED_SETUP;
SERVER2 REPLACEMENT.FINISHED_SETUP;

end SERVER_NODE;

node CONTROLLER_NODE is

pragma DISTINGUISHED;
end CONTROLLER_NODE;

with CLIENT_NODE;
with SERVER_NODE;
with REGISTRATION_PARTITION;
node body CONTROLLER_NODE is

---- create registration partition and client node
REGISTRATION: REGISTRATION._PARTITION := new REGISTRATION_PARTITION'PARTITION;

CLIENTS: CLIENT_NODE := new CLIENT_NODE'NODE(REGISTRATION);

task REPLACEMENT is

entry SERVER1;
for SERVER1 US at ...;

entry SERVER2;
for SERVER2 US at ...;

entry NODE_REPLACE;
for NODE REPLACE US at ...;

end REPLACE'MENT;

task body REPLACEMENT is
CURRENT_SERVERS : SERVER_NODE;
OLDSERVERS : SERVER_NODE;

begin
-- create initial server node
CURRENT_SERVERS := new SERVER_NODE'NODE(REGISTRATION);
CURRENT_SERVERS.INITIALIZE_PARTITIONS;

25

m
m

7 CONCLUSIONS AND FUTURE WORK

loop
select

accept SERVERI do

SERVERS.REPLACE_SERVER1;

end REPLACE_SERVER1;
or

accept SERVER2 do
SERVERS.SERVER2_SUPPORT.REPLACE_PARTITION;

end REPLACE_SERVER2;
or

-- Create new server node and inform old server that it is

-- being replaced. The old server controls the remote

-- replacement of the partitionsfrom it to the new server node.
-- Then, deallocatethe replaced server node

accept NODE_REPLACE;

OLDSERVERS := CURRENT_SERVERS;
CURRENT_SERVERS := new SERVER_NODE'NODE(REGISTRATION);

OLD_SERVERS .REPLACE_NODE;
UNCHECKED_DEALLOCATION(OLD SERVERS);

end select;

end loop;
end REPLACEMENT;

end CONTROLLER_NODE;

26

i

i

I

I

J

i

g

7 Conclusions and Future Work
I

In this paper, we have discussed online replacement of program units using AdaPT. Specifically,

we have summerized the major features of AdaPT, presented a replacement taxonomy and

introduced solutions to specific cases in the taxonomy.

Features of the replacement taxonomy include the following classifications:

• type of replacement (planned, unplanned)

• unit type (partition, node)

• location (local, remote)

• presence of state

• specification change

We have included solutions to the problems of planned partition and node replacement

using dynamic linking and loading of the latest compiled versions of the unit. In each of our

solutions, partition state is maintained across the replacement process. The node replacement

example includes remote replacement.

m

i

D
m

I

g

i
u

u

J

mm

U

z

i
m

REFERENCES 27

w

w

Further cases in the taxonomy which we propose to study include replacement of units with

specification changes. The general case can be considered a sequence of changes with: 1) no

specification changes, 2) only specification increases, and 3) only specification decreases.

We anticipate the use of a compilation tool which will allow specification changes without

recompilation of the entire system, if it can be determined that units are unaffected by the

change, and online inclusion of the new unit into the system in much the same way as we have

shown in this paper. In particular, if the specification of a unit is increased, there will be no

immediate impact on other units in the system and there is no need to recompile them. At a

later point other units may themselves be upgraded, utilizing the new features of the increased

specification.

We also envision the handling of reduced specifications. The compiler or a post-compilation

tool such as ASIS[4] can be used to check references to the items in the specification of the

unit being replaced. If the compiler or tool can determine that no other unit in the system

references an item, that item can be safely removed from the new specification. Because there

are no references to the removed item, other units are unaffected and need not be recompiled.

References

[1]

[21

[3]

[41

A. B. Gargaro, S. J. Goldsack, R. A. Volz, and A. J. Wellings, "A Proposal to Support Re-

liable Distributed Systems in Ada 9X," Technical Report 90-10, Department of Computer

Science, Texas A&M University, College Station, Texas, 1990.

A. A. Holzbacher-Valero, S. J. Goldsack, R. Volz and R. Waldrop. "Transforming AdaPT

to Ada83," Status Report, subcontract #074 cooperative agreement NCC-9-16.

R. S. Waldrop, R. A. Volz, G. W. Smith,A. A. Itolzbacher-Valero and S. J. Goldsack.

"On-Line Replacement of Program Modules Using AdaPT," Status Report, subcontract

#074 cooperative agreement NCC-9-16.

J. B. Bladen, S. J. Blake, and D. Spenhoff. "Ada Semantic Interface Specification (ASIS),"

TRI-Ada '91 Conference Proceedings, October 1991.

w

if

i

|

i

i

I

i

i

i

i

I

i

u

i

m

i

i

